
Matrix Factorization with Scale-Invariant Parameters
Guangxiang Zeng1, Hengshu Zhu2, Qi Liu1,∗, Ping Luo3, Enhong Chen1, Tong Zhang2

1School of Computer Science and Technology, University of Science and Technology of China,
zgx@mail.ustc.edu.cn, qiliuql@ustc.edu.cn, cheneh@ustc.edu.cn

2Baidu Research-Big Data Lab, zhuhengshu@baidu.com, zhangtong10@baidu.com
3Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of

Computing Technology, Chinese Academy of Sciences, luop@ict.ac.cn

Abstract
Tuning hyper-parameters for large-scale matrix
factorization (MF) is very time consuming and
sometimes unacceptable. Intuitively, we want to
tune hyper-parameters on small sub-matrix sample
and then exploit them into the original large-scale
matrix. However, most of existing MF methods
are scale-variant, which means the optimal hyper-
parameters usually change with the different scale
of matrices. To this end, in this paper we propose a
scale-invariant parametric MF method, where a set
of scale-invariant parameters is defined for model
complexity regularization. Therefore, the proposed
method can free us from tuning hyper-parameters
on large-scale matrix, and achieve a good perfor-
mance in a more efficient way. Extensive exper-
iments on real-world dataset clearly validate both
the effectiveness and efficiency of our method.

1 Introduction
Matrix Factorization (MF) is among the most important ma-
chine learning techniques for real-world Collaborative Fil-
tering (CF) applications, which attracts more and more at-
tention in recent years [Koren et al., 2009; Ge et al., 2011;
Wu et al., 2012; Zhu et al., 2014]. The main idea behind MF
is that an m × n user-item rating matrix, where n items is
assigned to m users, is modeled by the product of an m×K
user factor matrix and the transpose of an n ×K item factor
matrix [Srebro et al., 2003; Rennie and Srebro, 2005].

A variety of effective MF methods have been pro-
posed, which can be mainly grouped into non-convex meth-
ods [Mnih and Salakhutdinov, 2007; Pilászy et al., 2010;
2010] and convex methods [Bach et al., 2008; Journée et al.,
2010; Bouchard et al., 2013]. The main difference between
these two types of methods is that the number of factors can
be self-determined in convex methods while it has to be set
manually in non-convex methods. Indeed, both previous con-
vex and non-convex methods can achieve good performance
through carefully tuning their hyper-parameters. However,
the cost of tuning hyper-parameters is often ignored. In fact,
tuning hyper-parameters for large-scale MF problems is very

∗Corresponding author.

time consuming and sometimes unacceptable [Chan et al.,
2013]. Intuitively, a straightforward solution to this problem
is to tune the hyper-parameters on small sub-matrix and then
directly exploit them into the original large matrix. However,
most of existing MF methods cannot work well for this idea
due to the fact that their hyper-parameters are sensitive to the
scale of matrix. In other words, the optimal hyper-parameters
usually change with the different scale of matrices. We will
both theoretically and experimentally analyze this issue in
Section 5 and Section 6, respectively.

To address the above challenge, in this paper we propose a
scale-invariant parametric MF method for facilitating model
selection. Specifically, we assume that: the k-th latent factor
values of any rating matrix and its sub-matrices follow the
same normal distribution N (0, σ2

k). With this assumption,
we can first estimate a set of suitable {σ2

k}Kk=1, namely Fac-
torization Variances, by a randomly drawn sub-matrix. Then
we use them as constraint parameters to formulate a new MF
problem such that the variance of the k-th dimension latent
factor values is not bigger than σ2

k, which can be used to con-
duct MF for the original large-scale matrix and any of its sub-
matrices. Since the latent factor values of the sub-matrix and
the original matrix are generated from the same distributions,
we may still get a good performance on the original large ma-
trix. In this process, factorization variances can introduce the
similar effect of model complexity regularization, which is
irrelevant to the scale of training matrices. In this sense, the
proposed method is Scale-Invariant, which can free us from
tuning hyper-parameters on large-scale matrix and achieve a
good performance in a more efficient way. Specifically, our
contributions can be summarized as follows.

First, to the best of our knowledge, we are the first to for-
mulate the problem of MF with scale-invariant parameters.
The unique perspective to this problem is to use the vari-
ance of the latent factor values from each dimension to con-
trol model complexity. All these parameters can be estimated
on the resultant latent matrix output from any previous MF
method on a random-sampled sub-matrix.

Second, we find that the formulated problem can be trans-
formed into an equivalent problem, where the feasible set for
each factor dimension is within a sphere. To solve this prob-
lem, we first initialize each dimension with the steepest de-
cent eigenvector of the gradient matrix of the objective func-
tion. Then, we optimize the factors by the gradient decent

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4017

= ×

×=

Randomly Sample

Figure 1: An Example of Factorization Variances.

method with projection to the feasible set.
Third, we both theoretically and experimentally prove that

previous MF methods (i.e., in the form of both trace trade-off
and trace bounding) are scale-variant. Moreover, extensive
experiments on a real-world data set also empirically prove
the effectiveness of our method, i.e., the hyper-parameters
tuned by small sub-matrix can still achieve good performance
on the original large-scale matrix.

2 Preliminaries & Assumption
In this paper, we follow the Positive Semi-Definite (PSD)
style MF model [Bach et al., 2008; Candès and Recht, 2009],
which is shown in the top of Figure 1. Indeed, it is also
equivalent to those SVD style formulations for MF [Mnih
and Salakhutdinov, 2007; Koren, 2008]. Specifically, with
PSD formulation the input matrix M = UV T ∈ Rm×n is
put at the top-right corner of the PSD matrix R, and MT is
put at the bottom-left corner of R. Here, we aim to solve the
factorization problem R = Y Y T , where the top part of Y
equals to U , and the bottom part of Y equals to V .

Different with previous studies, in this paper we consider
the shared property among the column values of Y , and char-
acterize the values in Y in a more sophisticated way. Specif-
ically, we assume the values of the k-th column of Y satisfy
the following distribution:

Yi,k ∼ N (0, σ2
k), i.i.d., i = 1, ..., N. (1)

As we can see, values lie in the same column (e.g., the k-
th column) share a same variance σ2

k, and the {σ2
k}Kk=1 are

named Factorization Variances. In particular, we assume:

Assumption 2.1. The factorization variances {σ2
k}Kk=1 are

scale-invariant for MFs on different sized sub-matrices which
are randomly drawn from the same matrix.

In other words, in our approach, the sampled sub-matrices
share the same factorization variances with the original large
matrix (i.e., as shown in Figure 1). With the above assump-
tion, we can estimate a set of optimal parameters {σ2

k}Kk=1
on the sampled small sub-matrix M ′, which is relatively effi-
cient. Since the latent matrix Y and Y ′ are generated from the
same distributions, we can exploit the estimated {σ2

k}Kk=1 into
the original large matrix M and hopefully obtain comparable
performance. Along this line, there are two major challenges:

• How to utilize the scale-invariant parameters, i.e, factor-
ization variances, for large-scale MF?
• How to estimate the factorization variances (including

the number of factors, namely K)?
None of the two challenges is trivial task. For the first one,

we will propose a new problem, matrix FActorization with
factorization VAriances (FAVA for short), with the factoriza-
tion variances as the constraints, and solve it in Section 3.
Furthermore, the second one will be discussed in Section 4.

3 MF with Factorization Variances
In this section, we assume the factorization variances
{σ2

k}Kk=1 are known in advance. The estimation method for
them will be detailed in Section 4.

3.1 The Formulation of FAVA
Here, we introduce how to adapt the factorization variances as
the constraints for MF process. Specifically, in order to utilize
the Assumption 2.1, we impose the following constraints:

1

N

N∑
i=1

Y 2
i,k ≤ σ2

k, k = 1, ...,K. (2)

The intuition behind these constraints is that we let the vari-
ance of the k-th column elements no larger than the known
factorization variance. In these constraints, {σ2

k}Kk=1 serve
as the model complexity controllers. The bigger the value of
{σ2

k}Kk=1 is, the more freedom the values of the correspond-
ing column have. Thus, it actually defines the feasible set for
searching solution and guarantees the generalization ability
of the model. With these constraints, we formulate the FAVA
problem as follows:

min
Y

G(Y Y T) =
∑

(i,j)∈Ω

(Ri,j − Yi,: · Yj,:)2

s.t. 1
N

N∑
i=1

Y 2
i,k ≤ σ2

k, k = 1, ...,K,
(3)

where Yi,: means the i-th row of matrix Y . In order to turn
the contraints into a consistent form, we let:

ΣK = diag{σ1, σ2, .., σK}, (4)

and then we can rewrite the variable Y as follows:

Y = PΣK (5)

where P ∈ RN×K . Then, it is obvious that the constraints
in Equation (2) are equivalent to ||P:,k||2 ≤ N , where P:,k

means the k-th column of P , k = 1, ...,K. Then, we get the
following equivalent form of FAVA:

min
P

G(Y Y T) =
∑

(i,j)∈Ω

(Ri,j − Yi,: · Yj,:)2

s.t. Y = PΣK
||P:,k||2 ≤ N, k = 1, ...,K.

(6)

If the above problem is solved, we can get Y = PΣK
immediately. However, there are still some challenges:
• Firstly, simple gradient based method could not guaran-

tee the searched solutions always meet the constraints of
in Equation (6).

4018

• Secondly, how to initialize the values of P ? Randomly
initialization can be a solution, but far from the best.

Next we will first show how we search solution for problem
in Equation (6) in Section 3.2, then we give an effective ini-
tialization method for P in Section 3.3.

3.2 Sphere Projection for FAVA
As we can see in the constrains of problem in Equation (6),
the P:,k is within a ball with radius

√
N and its sphere, we

optimize the latent factors by gradient decent method with
projection to the feasible set of FAVA. Firstly, the gradient of
objective function in Equation (6) is:

4P =
∂G(Y Y T)

∂P
= 2∇XG(Y Y T)PΣ2

K , (7)

from above we also know that:

4P:,k =
∂G(Y Y T)

∂P:,k
= 2σ2

k∇XG(Y Y T)P:,k. (8)

Assume αt is the t-th iteration decent step size, then we up-
date each column P:,k by the following rule:

P
(t+1)
:,k = ΠN (P

(t)
:,k − αt · 4P

(t)
:,k), (9)

where

ΠN (P ′:,k) =

√
N ·P ′

:,k√
tr(P ′

:,kP
′
:,k

T)
, tr(P ′:,kP

′
:,k
T

) > N,

P ′:,k, else.

(10)

As the projection only happens when tr(P ′:,kP
′
:,k
T

) > N ,
and the projection makes P ′:,k project onto the sphere of ball
with radius

√
N in RN . Thus, we call this method Sphere

Projection. In addition, the step size αt can be searched by
the binary search method BiSearch(P (t),4P (t)) as follows:

1. Set αt = 1.0;
2. Update each column of P (t) by Equation (9) and the re-

sult is denoted as P (t+1);

3. Let Y (t+1) = P (t+1)ΣK , X(t+1) = Y (t+1)Y (t+1)T . If
G(X(t+1)) ≥ G(X(t)), let αt = 1

2αt repeat 2 and 3,
else return αt.

Finally, we stop the optimization iteration when αt < ε,
where ε is a given accuracy level.

3.3 Steepest Initialization for FAVA
In this subsection, we will show the process that initializes
columns of P with eigendecomposition of gradient matrix
∇XG(X). The intuition behind this process is that we initial-
ize the columns of P with the firstK steepest decent direction
of G(X) at X = 0.

Firstly, by the definition in Equation (6), we know that
∇XG(X) is always a symmetric matrix of the block form

∇XG(X) =

[
0 M

MT 0

]
, when X � 0. As mentioned

in [Jaggi et al., 2010], we have the following proposition:

Proposition 3.1. The spectrum of ∇XG(X) is always sym-

metric: whenever
[
u
v

]
is an eigenvector for some eigenvalue

ρ, then
[
u
−v

]
is an eigenvector for −ρ.

So we know that the smallest eigenvalue of ∇XG(X) is
always ρmin ≤ 0. Then we have the following theorem.
Theorem 3.2. Given Yk ∈ RN×k, let Yk+1 = [Yk|

√
β · ~y] ∈

RN×(k+1), where β ∈ R+, ~y ∈ RN and ||~y|| = 1, ~y is called
attached vector for Yk. Then, the unit eigenvector ~ymin for
the smallest eigenvalue ρmin of ∇XG(YkY

T
k) is the steepest

decent attached vector of Yk, which means that f(β, ~y) =
G(Yk+1Y

T
k+1) decent the fastest when ~y = ~ymin at β = 0.

Proof. Firstly, let Xk = YkY
T
k and 4X = ~y~yT . By defini-

tion we have:

f(β, ~y) = G(Yk+1Y
T
k+1) = G(YkY

T
k + β~y~yT)

= G(Xk + β4X).
(11)

Then we have:

f ′β(β, ~y) = ∇XG(Xk + β4X) ◦ 4X, (12)

where A ◦B = tr(AB). Finally we have:

f ′β(0, ~y) = ∇XG(Xk) ◦ 4X
= ~yT∇XG(YkY

T
k)~y

≥ ~yTmin∇XG(YkY
T
k)~ymin = ρmin.

(13)

And we also know that:

f ′β(0, ~ymin) = ~yTmin∇XG(YkY
T
k)~ymin

= ρmin ≤ 0,
(14)

which means f(β, ~y) is decent at β = 0 when ~y = ~ymin, and
for any ~y 6= 0 and ||~y|| = 1 we have:

f ′β(0, ~y) ≥ f ′β(0, ~ymin). (15)

~ymin is the steepest decent attached vector of Yk is proved.

After we getting the steepest decent attached vector, now
we focus on how to get the steepest step size β. Actually,
that is quite straight forward, let Xk = YkY

T
k and4Xmin =

~ymin~y
T
min. By Equation (12), let f ′β(β, ~ymin) = 0, then:

0 = ∇XG(Xk + β4Xmin) ◦ 4Xmin

= ∇XG(Xk) ◦ 4Xmin

+2β(IΩ �4Xmin) ◦ 4Xmin,
(16)

where IΩ is a matrix that when (i, j) ∈ Ω, IΩ(i, j) = 1, else
IΩ(i, j) = 0, and A � B = C means Ci,j = Ai,j × Bi,j .
Then we immediately have:

β = − ∇XG(Xk)◦4Xmin

2(IΩ�4Xmin)◦4Xmin

= − ρmin

2tr((IΩ�4Xmin)4Xmin) .
(17)

Now, we can summarize the eigenvector initialization method
EigenInitial(R, {σk}Kk=1) for P as follows:

1. Let k = 0, P0 = [], Y0 = [] and denote X0 = 0;

4019

2. Find {ρmin, ~ymin} of matrix∇XG(Xk);

3. Compute β by Equation (17), let k = k + 1;

4. Let β′ =
√
β

σk
when

√
β

σk
≤
√
N , else β′ =

√
N ;

5. Let Pk = [Pk−1|β′ · ~ymin];

6. Let Σk = diag{σ1, ..., σk}, Yk = PkΣk, Xk = YkY
T
k ;

7. Repeat 2 to 7 until k = K;

8. Return P = PK .

In addition, line 4 is to ensure the initial values of P meet
the constraints of problem in Equation (6). Line 2 is to find
{ρmin, ~ymin} of matrix ∇XG(Xk), we do not need to con-
duct full eigendecomposition to the matrix ∇XG(Xk) as it
is very time consuming which does not fit for sparse large
scale matrix, we can use the sparse power method [Yuan and
Zhang, 2013] with a shift to the original matrix ∇XG(Xk).
Let c be a constant large enough, we construct a shifted ma-
trix D = c · I −∇XG(Xk), then we can easily get the dom-
inant eigen value-vector pair {ρd, ~yd} of matrix D through a
few power iterations (less than 20 with accuracy level 10−5 in
most circumstances), then we get {ρmin = c − ρd, ~y = ~yd}.
Finally, we summarize the FAVA method in Algorithm 1.

Algorithm 1 Scale-Invariant Matrix Factorization (FAVA).

Input:
Accuracy level ε, Incomplete matrix R;
Factorization Variances {σ2

1 , σ
2
2 , ..., σ

2
K};

Output: Y ;
1: Let P = EigenInitial(R, {σk});
2: Let t = 0, αt = 10× ε and P (t) = P ;
3: while αt ≥ ε do
4: Compute4P (t) by Equation (7);
5: Let αt+1 = BiSearch(P (t),4P (t));
6: Update each column of P (t) by Equation (9), and the

result is denoted as P (t+1);
7: t = t+ 1;
8: end while
9: return Y = P (t)ΣK .

4 Estimating Factorization Variances
In this section, we discuss about how to estimate the Fac-
torization Variances and also the number of them, i.e.,K.
Before getting into the detail, it is worth mentioning that
the algorithms introduced in this section are only applied to
small sampled sub-matrices for estimating suitable factoriza-
tion variances through hyper-parameter tuning.

As the number of factors of non-convex methods must be
set manually, we focus our discussion on using convex meth-
ods for estimating factorization variances. The most widely
used two forms of convex formulation are the trace trade-off
form [Bach et al., 2008; Candes and Plan, 2010]:

min
X

F (X) =
∑

(i,j)∈Ω

(Ri,j −Xi,j)
2 + λtr(X)

s.t. X � 0,
(18)

and the trace bounding form [Hazan, 2008; Jaggi et al.,
2010]:

min
X

G(X) =
∑

(i,j)∈Ω

(Ri,j −Xi,j)
2

s.t. X � 0,
tr(X) ≤ γ.

(19)

Actually, as mentioned in [Jaggi et al., 2010], the above two
formulations are equivalent in the following sense.
Theorem 4.1. If X is an optimal solution to Problem in
Equation (18), let γ = tr(X), then X is also an optimal
solution to Problem in Equation (19). On the other hand, if
X is an optimal solution to Problem in Equation (19), let
λ = −∇XG(X)◦X

tr(X) , then X is also an optimal solution to
Problem in Equation (18).

Next, we choose the formulation form of trace trade-off in
Equation (18) as an example to discuss its solution. Firstly,
let X = Y Y T , then the constraint in Equation (18) is can-
celed and the problem can be rewritten into a non-convex
form [Mnih and Salakhutdinov, 2007] (with λ = λu = λv):

min
Y

∑
(i,j)∈Ω

(Ri,j − Yi,: · Yj,:)2 + λtr(Y Y T). (20)

Then, we use the method proposed in [Journée et al., 2010] to
solve this problem in Equation (18) through finding the local
optimum of the problem in Equation (20), and increasing the
number of Y ’s columns one by one until the condition of the
following Theorem 4.2 is met to achieve its global optimum.
Theorem 4.2. A local minimizer Y of the non-convex prob-
lem in Equation (20) provides a global minimum point X =
Y Y T of the convex problem in Equation (18) if and only if
SY = ∇XF (Y Y T) � 0.

After we get Y , X = Y Y T is the global optimum for
Problem in Equation (18). Then, by the assumption in
Equation (1), we can approximate the factorization variances
{σ2

k}Kk=1 as follows:

σ2
k ≈

1

N

N∑
i=1

Y 2
i,k, k = 1, 2, ...,K. (21)

On the small sampled sub-matrix we can tune the best pa-
rameter λ∗ for Problem in Equation (18) by cross-validation.
Then, with the latent factors resulted from λ∗ we can esti-
mate the corresponding factorization variances. Hopefully,
these factorization variances work well on the original large
matrix. The experiments will empirically validate this.

5 Theoretical Analysis on Scale-Variant and
Scale-Invariant Methods

Now, we give the theoretical analysis on the relationship be-
tween the scale-invariant formulation FAVA (proposed in this
paper) and the scale-variant ones (in the form of both trace
trade-off and trace bounding).

Firstly, let’s take a look at the relationship between FAVA
and the trace trade-off formulation. Before detailing this rela-
tionship, we need to first present the following two lemmas.

4020

Lemma 5.1. X is an optimal solution of problem in Equa-
tion (18) if and only if the following conditions hold:

1# X � 0,
2# S � 0,
3# SX = 0,

(22)

where S = ∇XF (X).
Lemma 5.2. If P is a local minimum solution of problem in
Equation (6), then the following conditions hold:

4P:,k · P:,k ≤ 0, k = 1, ...,K, (23)

where 4P is the gradient of objective function in Equa-
tion (6), and4P:,k means the k-th column of4P .

The conditions in Lemma 5.1 are the KKT conditions of
the problem in Equation (18) and similarly the conditions in
Lemma 5.2 are the KKT conditions of the problem in Equa-
tion (6) (see [Boyd and Vandenberghe, 2009]).
Theorem 5.3. Let Y = PΣK , where P is a local minimum
solution of FAVA in Equation (6), and X = Y Y T . If X is an
optimal solution to problem in Equation (18) for some λ, then
we have:

λ = −∇XG(X) ◦X
tr(X)

≥ −∇XG(X) ◦X
N ·

∑K
k=1 σ

2
k

≥ 0 (24)

Proof. Firstly, we know that F (X) = G(X) + λtr(X), then
by 3# of Lemma 5.1 we know that:

∇XG(X)X + λX = 0. (25)

Both sides of the above equation get trace, then we have:

λ = − tr(∇XG(X)X)

tr(X)
= −∇XG(X) ◦X

tr(X)
. (26)

And by constraints in Equation (2) we also know that:

0 < tr(X) = tr(Y Y T) ≤ N ·
K∑
k=1

σ2
k. (27)

Next, we prove ∇XG(X) ◦ X ≤ 0. As X = Y Y T and
Y = PΣK , then we have:

tr(∇XG(X)X) = tr(∇XG(Y Y T)Y Y T)
= tr(∇XG(Y Y T)PΣ2

KP
T)

= tr(PT∇XG(Y Y T)PΣ2
K).

(28)

By Equation (7) we have:

tr(∇XG(X)X) =
1

2
tr(PT4P) =

1

2

K∑
k=1

4P:,k · P:,k.

(29)
By conditions in Lemma 5.2 we have:

∇XG(X) ◦X = tr(∇XG(X)X) ≤ 0. (30)

Now we have already proved:

λ = −∇XG(X) ◦X
tr(X)

≥ −∇XG(X) ◦X
N ·

∑K
k=1 σ

2
k

≥ 0. (31)

Theorem 5.3 clarifies the correlation between FAVA and
the trace trade-off form for MF. It actually provides a lower
bound for the parameter λ by considering the equivalence of
the two problems. We can clearly see that this lower bound
on λ is not only dependant on the scale of the matrix N , but
also the sparsity of the incomplete matrix R (the number of
non-zero terms in ∇XG(X) ◦ X is |Ω|). That is the reason
why the best working λ∗ on a sub-matrix may not perform
well on large scale matrices. Similarly, we show the correla-
tion between FAVA and bounding trace formulation with the
following theorem.

Theorem 5.4. Let Y = PΣK , where P is a local minimum
solution of FAVA in Equation (6), and X = Y Y T . If X is
an optimal solution for problem in Equation (19) for some γ,
then we have:

γ ≥ N
K∑
k=1

σ2
k. (32)

The above theorem can be got immediately by the bound-
ing trace constraint in Equation (19), as N

∑K
k=1 σ

2
k is the

upper bound of tr(X) by the constraints in Equation (6). It
states that the parameter γ is also dependant on the scale of
the matrix N . This is the reason why the best working γ∗ on
a sub-matrix may not perform well on large matrices.

6 Experiment
In this section, we validate the effectiveness and efficiency of
our approach FAVA based on a real-world dataset.
Baselines. We choose two widely used convex MF methods
for comparison, namely
TTF: Trace Trade-off Form [Bach et al., 2008; Bouchard et
al., 2013], which is formulated in Equation (18).
TBF: Trace Bounding Form [Hazan, 2008; Jaggi et al., 2010],
which is formulated in Equation (19).
In the experiments, FAVA uses TTF to estimate the {σ2

k}Kk=1
by randomly drawn sub-matrix and operates on the target ma-
trix. The convergence level of all methods is set to 10−5.

Table 1: Basic Statistics of Datasets.

Dataset m n #rating Dataset m n #rating
M0.04,1 179 124 4,126 M0.08,1 899 319 27,858
M0.04,2 182 126 4,091 M0.08,2 1,092 356 35,547
M0.04,3 197 123 4,475 M0.08,3 902 363 28,769
M0.04,4 184 143 4,521 M0.08,4 922 326 28,852
M0.04,5 126 105 2,584 M0.08,5 899 337 27,246
M0.16,1 3,930 928 176,117
M0.16,2 3,422 864 144,552 Dataset MovieLens10M
M0.16,3 3,297 841 136,066 m 69,878
M0.16,4 3,929 875 166,827 n 10,677
M0.16,5 3,538 914 149,484 #rating 10,000,054

Dataset. Here we use MovieLens10M [Miller et al., 2003]
dataset for validation. Specifically, we randomly splited the
large dataset into training set and test set (80% for training,
20% for test). All the sub-matrices was sampled from the
training set. Let M ∈ Rm×n be the original large scale ma-
trix, we sampled each sub-matrix dataset as follows: given a
ratio r, we randomly sampled m× r rows and n× r columns

4021

from the M first; then we collected the elements that are both
covered by the sampled rows and columns into a set Ω; fi-
nally, we removed rows and columns whose numbers of el-
ements in Ω are less than 10, and the remaining rows and
columns and their covering elements in Ω formed our result-
ing sub-matrix dataset. For each ratio r, we sampled 5 sub-
matrices independently, and the id-th sample is denoted as
Mr,id. The statistics of datasets are summarized in Table 1.
Unless otherwise noted, all methods conducted 5-fold cross-
validation when they run on the sub-matrix datasets.
Overall comparison on sub-matrices. In this experiment,
we tuned parameters for TTF and TBF on the sub-matrices
first, let λ variate from 0.1 to 4.0 by step size 0.1, and γ ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, 10000}. The left part of Table 2 shows the
parameter tuning results. Then we used the best parameters
estimated by M0.04,1 for all the methods, and let them run
on all the sub-matrices, results are shown in the right part of
Table 2. Figure 2 shows the total time of parameter tuning for
both TTF and TBF methods.

As we can see from the right part of Table 2, for ef-
fectiveness comparison, FAVA performs the best across all
sub-matrices. While for efficiency comparison, TTF method
has superiority when the scale of sub-matrices is small (e.g.,
M0.04,∗ series sub-matrices). However, when the scale of
sub-matrices become larger, the efficiency of TTF becomes
worse rapidly under the parameter setting that are estimated
by M0.04,1. In contrast, the efficiencies of TBF and FAVA
are always comparable across all sub-matrices. It is worth to
point out that although the results of FAVA are not as good
as the best results of TTF and TBF on M0.08,∗ and M0.16,∗
series sub-matrices, together with Figure 2 we can see that
the amount of running time of FAVA to achieve such results
(i.e., TTF parameter tuning time on M0.04,1 + FAVA running
time) is much less than the parameter tuning time of TTF and
TBF on these sub-matrices. Also, from Figure 2 we can find
the parameter tuning time grows enormously as the matrix
scale increases, which indicates tuning parameter on large-
scale matrix is very time consuming.

M0.04, * M0.08, * M0.16, *

1

32

1024

32768

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Datasets

T
o

ta
l
ti
m

e
 (

s
)

TTF

TBF

Figure 2: Parameters Tuning Time.

Comparison on MovieLens10M. In this experiment, we
used the best parameters estimated by M0.04,1 for all the
methods, then let they run on the original large-scale Movie-
Lens10M matrix (results are shown in Table 3). Then, we
used the M0.04,1, M0.08,1 and M0.16,1 to estimate 3 different
sets of {σ2

k}Kk=1, and feed them into our FAVA method for MF
on MovieLens10M dataset (results are shown in Table 4).

Table 3: Baselines Comparison.

TTFλ=1.0 TBFγ=70.0 FAVA
RMSE Time RMSE Time RMSE Time

0.92111 11516m5.600s 1.0513 48m5.631s 0.81530 95m21.948s

From Table 3 we can see that, once again FAVA plays the
best on effectiveness, i.e., its RMSE is much better than that
of baselines. The efficiencies of TBF and FAVA are compa-
rable, while that of TTF on MovieLens10M dataset is much
worse than the other two methods. Moreover, from Table 4
we can see that the RMSE is almost unchange as the scale
of sub-matrices changes, however, the running time of FAVA
increases as the scale of sub-matrices becomes large. That is
because when the scale of sub-matrices becomes larger and
larger, the structure of matrix becomes more and more com-
plex and the TTF method needs more latent factors to capture
them, which leads to more computation cost for FAVA on the
original MovieLens10M matrix.

Table 4: Sub-Matrices Estimation Test for FAVA.

M0.04,1 M0.08,1 M0.16,1

RMSE Time RMSE Time RMSE Time
0.81530 95m21.948s 0.81513 180m26.588s 0.81885 322m18.697s

7 Related Work
We briefly review works about MF in terms of collabora-
tive filtering here. Generally speaking, the MF methods
can be divided into two categories, Bayesian (e.g., [Lim and
Teh, 2007; Salakhutdinov and Mnih, 2008; Freudenthaler et
al., 2011; Rendle, 2013] and non-Bayesian (e.g., [Mnih and
Salakhutdinov, 2007; Pilászy et al., 2010; Rendle, 2010])
methods. The main difference between these two kinds of
methods is that the Baysian methods introduce Baysian infer-
ence to the inferring of latent factors, while the non-Bayesian
methods give MAP approximation to them. The method pro-
posed in this paper belongs to the non-Bayesian method. All
these methods can achieve good performance through care-
fully tuning their hyper-parameters. However, the cost of
hyper-parameters tuning is ignored.

Although there are Baysian methods that claim they are
non-parametric [Blei et al., 2010; Ding et al., 2010; Xu et al.,
2012], they are only non-parametric on how to set the num-
ber of latent factors, they still have to tune hyper-parameters
(e.g., regularization parameters, prior sampling distribution
parameters) to a achieve good performance. Actually, the
non-Baysian convex MF methods [Bach et al., 2008; Jaggi
et al., 2010; Journée et al., 2010; Bouchard et al., 2013] also
can determine the number of latent factors automatically.

The proposed method is different from all these works.
Firstly, to the best of our knowledge, we are the first to formu-
late a problem of MF with scale-invariant parameters. Sec-
ondly, we propose a new optimization problem called FAVA
for scale-invariant parametric MF, and solve it both effec-
tively and efficiently. Thirdly, we present the theoretical prop-
erties show that the previous MF methods (in the form of both
trace trade-off and trace bounding) are scale-variant.

4022

Table 2: Overall Comparison on Sub-Matrices.

Dataset
Parameter Tuning Parameters Estimated by M004,1

TTF TBF TTFλ=1.0 TBFγ=70.0 FAVA
λbest RMSE γbest RMSE RMSE Time (s) RMSE Time (s) RMSE Time (s)

M004,1 1.0 0.91507±0.02324 70.0 0.91689±0.02283 0.91507±0.02324 1.656 0.91689±0.02283 4.276 0.90697±0.02317 2.466
M004,2 1.0 0.89232±0.02154 60.0 0.89327±0.02207 0.89232±0.02154 1.538 0.89342±0.02182 4.204 0.88595±0.01709 2.382
M004,3 1.1 0.90167±0.02855 70.0 0.90265±0.02851 0.90213±0.02877 1.679 0.90265±0.02851 4.685 0.89793±0.03421 2.590
M0.04,4 1 0.90275±0.01600 80.0 0.90511±0.01606 0.90275±0.01600 1.818 0.90554±0.01568 4.78 0.89171±0.01470 2.531
M0.04,5 0.9 0.96147±0.03611 60.0 0.96256±0.03636 0.96219±0.03662 0.830 0.96418±0.03567 2.767 0.95109±0.03162 1.294
M0.08,1 1.6 0.89540±0.00678 300.0 0.89663±0.00707 0.91132±0.00640 37.66 0.93555±0.00872 30.816 0.90303±0.00387 25.438
M0.08,2 1.7 0.88941±0.00520 400.0 0.89083±0.00557 0.89588±0.00548 71.006 0.93697±0.00424 36.022 0.88909±0.00387 35.524
M0.08,3 1.7 0.89779±0.00748 300.0 0.89910±0.00714 0.91524±0.00700 40.108 0.93447±0.00831 33.47 0.90663±0.00000 26.953
M0.08,4 1.7 0.90125±0.00616 300.0 0.90278±0.00600 0.91768±0.00520 40.927 0.94458±0.00700 28.437 0.90581±0.00424 25.942
M0.08,5 1.7 0.91429±0.00995 300.0 0.91552±0.00990 0.92521±0.00975 36.897 0.94752±0.01082 27.05 0.92075±0.00906 24.901
M0.16,1 2.6 0.87246±0.00200 1000.0 0.87565±0.00200 0.91254±0.00200 948.059 0.99213±0.00245 174.225 0.88960±0.00245 233.074
M0.16,2 2.4 0.86465±0.00283 1000.0 0.86686±0.00283 0.90014±0.00283 613.385 0.97799±0.00424 140.29 0.88712±0.00141 174.156
M0.16,3 2.3 0.88353±0.00173 1000.0 0.88571±0.00200 0.91835±0.00245 597.935 0.99485±0.00245 129.596 0.90078±0.00447 180.950
M0.16,4 2.5 0.87162±0.00346 1000.0 0.87421±0.00374 0.90975±0.00346 854.419 0.99198±0.00424 163.595 0.89998±0.00316 256.393
M0.16,5 2.4 0.88460±0.00316 1000.0 0.88669±0.00332 0.92096±0.00316 687.802 0.99236±0.00245 144.217 0.90935±0.00500 222.723

8 Conclusion
In this paper, we proposed a scale-invariant parametric MF
method for addressing the idea that tuning hyper-parameters
on small sub-matrix and then use them on the original large
scale matrix. Specifically, we can use any of the previous MF
methods to estimate the best working factorization variances
on small sampled sub-matrix, and then use them for the pro-
posed method to conduct both effective and efficient MF on
original large scale matrix. Extensive experiments also show
that the proposed method can achieve good performance on
the original large scale matrix with the estimated factorization
variances on small sampled sub-matrix.

Acknowledgments
This research was partially supported by grants from the Na-
tional Science Foundation for Distinguished Young Scholars
of China (Grant No. 61325010), the National High Technol-
ogy Research and Development Program of China (Grant No.
2014AA015203), the Fundamental Research Funds for the
Central Universities of China (Grant No. WK2350000001)
and the Natural Science Foundation of China (Grant No.
61403358). Ping Luo was supported by the National Natural
Science Foundation of China (No. 61473274) and National
863 Program (No.2014AA015105).

References
[Bach et al., 2008] Francis Bach, Julien Mairal, and Jean

Ponce. Convex sparse matrix factorizations. arXiv preprint
arXiv:0812.1869, 2008.

[Blei et al., 2010] David M Blei, Perry R Cook, and Matthew
Hoffman. Bayesian nonparametric matrix factorization for
recorded music. In ICML ’10, pages 439–446, 2010.

[Bouchard et al., 2013] Guillaume Bouchard, Dawei Yin,
and Shengbo Guo. Convex collective matrix factorization.
In AISTATS ’13, pages 144–152, 2013.

[Boyd and Vandenberghe, 2009] Stephen Boyd and Lieven
Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2009.

[Candes and Plan, 2010] Emmanuel J Candes and Yaniv
Plan. Matrix completion with noise. Proceedings of the
IEEE, 98(6):925–936, 2010.

[Candès and Recht, 2009] Emmanuel J Candès and Ben-
jamin Recht. Exact matrix completion via convex op-
timization. Foundations of Computational mathematics,
9(6):717–772, 2009.

[Chan et al., 2013] Simon Chan, Philip Treleaven, and Licia
Capra. Continuous hyperparameter optimization for large-
scale recommender systems. In BigData ’13, pages 350–
358, 2013.

[Ding et al., 2010] Nan Ding, Rongjing Xiang, Ian Molloy,
Ninghui Li, et al. Nonparametric bayesian matrix fac-
torization by power-ep. In AISTATS ’10, pages 169–176,
2010.

[Freudenthaler et al., 2011] Christoph Freudenthaler, Lars
Schmidt-Thieme, and Steffen Rendle. Bayesian factoriza-
tion machines. 2011.

[Ge et al., 2011] Yong Ge, Qi Liu, Hui Xiong, Alexander
Tuzhilin, and Jian Chen. Cost-aware travel tour recom-
mendation. In KDD ’11, pages 983–991, 2011.

[Hazan, 2008] Elad Hazan. Sparse approximate solutions to
semidefinite programs. In LATIN 2008: Theoretical Infor-
matics, pages 306–316. Springer, 2008.

[Jaggi et al., 2010] Martin Jaggi, Marek Sulovsk, et al. A
simple algorithm for nuclear norm regularized problems.
In ICML ’10, pages 471–478, 2010.

[Journée et al., 2010] Michel Journée, Francis Bach, P-A
Absil, and Rodolphe Sepulchre. Low-rank optimization
on the cone of positive semidefinite matrices. SIAM Jour-
nal on Optimization, 20(5):2327–2351, 2010.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: a multifaceted collaborative filtering model. In
KDD ’08, pages 426–434, 2008.

4023

[Lim and Teh, 2007] Yew Jin Lim and Yee Whye Teh. Vari-
ational bayesian approach to movie rating prediction. In
Proceedings of KDD Cup and Workshop, volume 7, pages
15–21, 2007.

[Miller et al., 2003] Bradley N Miller, Istvan Albert, Shy-
ong K Lam, Joseph A Konstan, and John Riedl. Movielens
unplugged: experiences with an occasionally connected
recommender system. In IUI ’03, pages 263–266, 2003.

[Mnih and Salakhutdinov, 2007] Andriy Mnih and Ruslan
Salakhutdinov. Probabilistic matrix factorization. In NIPS
’07, pages 1257–1264, 2007.

[Pilászy et al., 2010] István Pilászy, Dávid Zibriczky, and
Domonkos Tikk. Fast als-based matrix factorization for
explicit and implicit feedback datasets. In RecSys ’10,
pages 71–78, 2010.

[Rendle, 2010] Steffen Rendle. Factorization machines. In
ICDM ’10, pages 995–1000. IEEE, 2010.

[Rendle, 2013] Steffen Rendle. Scaling factorization ma-
chines to relational data. In VLDB ’13, pages 337–348,
2013.

[Rennie and Srebro, 2005] Jasson DM Rennie and Nathan
Srebro. Fast maximum margin matrix factorization for col-
laborative prediction. In ICML ’05, pages 713–719, 2005.

[Salakhutdinov and Mnih, 2008] Ruslan Salakhutdinov and
Andriy Mnih. Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In ICML ’08, vol-
ume 25, 2008.

[Srebro et al., 2003] Nathan Srebro, Tommi Jaakkola, et al.
Weighted low-rank approximations. In ICML ’03, vol-
ume 3, pages 720–727, 2003.

[Wu et al., 2012] Le Wu, Enhong Chen, Qi Liu, Linli Xu,
Tengfei Bao, and Lei Zhang. Leveraging tagging for
neighborhood-aware probabilistic matrix factorization. In
CIKM ’11, pages 1854–1858, 2012.

[Xu et al., 2012] Minjie Xu, Jun Zhu, and Bo Zhang. Non-
parametric max-margin matrix factorization for collabora-
tive prediction. In NIPS ’12, pages 64–72, 2012.

[Yuan and Zhang, 2013] Xiao-Tong Yuan and Tong Zhang.
Truncated power method for sparse eigenvalue problems.
The Journal of Machine Learning Research, 14(1):899–
925, 2013.

[Zhu et al., 2014] Hengshu Zhu, Enhong Chen, Hui Xiong,
Kuifei Yu, Huanhuan Cao, and Jilei Tian. Mining mobile
user preferences for personalized context-aware recom-
mendation. ACM Trans. Intell. Syst. Technol., 5(4):58:1–
58:27, December 2014.

4024

